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The paper is devoted to the problem of minimization of the non-smooth functional f with a non-positive
non-smooth Lipschitz-continuous functional constraint. We consider the formulation of the problem in the case
of quasi-convex functionals. We propose new strategies of step-sizes and adaptive stopping rules in Mirror
Descent for the considered class of problems. It is shown that the methods are applicable to the objective
functionals of various levels of smoothness. Applying a special restart technique to the considered version of
Mirror Descent there was proposed an optimal method for optimization problems with strongly convex objective
functionals. Estimates of the rate of convergence for the considered methods are obtained depending on the level
of smoothness of the objective functional. These estimates indicate the optimality of the considered methods from
the point of view of the theory of lower oracle bounds. In particular, the optimality of our approach for Holder-
continuous quasi-convex (sub)differentiable objective functionals is proved. In addition, the case of a quasi-
convex objective functional and functional constraint was considered. In this paper, we consider the problem
of minimizing a non-smooth functional f in the presence of a Lipschitz-continuous non-positive non-smooth
functional constraint g, and the problem statement in the cases of quasi-convex and strongly (quasi-)convex
functionals is considered separately. The paper presents numerical experiments demonstrating the advantages of
using the considered methods.

Keywords: non-smooth constrained optimization, quasi-convex functional, adaptive mirror descent, level
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Introduction

Non-smooth convex constrained optimization problems play an important role in modern large-
scale optimization and its applications [Ben-Tal, 1997; Nesterov, 2015; Shpirko, 2014]. There are a lot
of methods to solve such problems, among which one can mention the Mirror Descent Method [Beck,
2003; Nemirovsky, 1983].

Recently, in [Bayandina, 2018a] algorithms for Mirror Descent with both adaptive step selection
and an adaptive stopping criterion were proposed. In addition, an optimal method was proposed for
the special class of convex constrained optimization problems, when the gradient of the objective
functional satisfies the Lipschitz property. For example, quadratic functionals do not satisfy the
Lipschitz condition, but their gradient does. An adaptive Mirror Descent algorithm, based on the
ideology of [Nesterov, 2004], was proposed to solve such problems in [Bayandina, 2018a, Section 3.3].

In this paper we develop the abovementioned research and consider some modifications of
the algorithmic scheme [Bayandina, 2018a, Section 3.3]. More precisely, in proposed Algorithm 2
we consider a new approach to choosing a step in the method, as well as appropriate options for
stopping criteria, which differ from [Bayandina, 2018a]. It is important that we choose the non-

productive step (Vg(x¥) is the subgradient g at the current point x*) in the form 7y = instead

_°
VeIl

hy = in [Bayandina, 2018a]. This circumstance, as well as the appropriate choice of

£
IVeGOE .
the number of iterations (10), leads us to the fact that the method can run faster than the previous
analogue [Bayandina, 2018a, Section 3.3] in the case when the values of the subgradients are large.
Note that a method similar to Algorithm 2 was proposed in [Nemirovsky, 1983] for the case of convex

Lipschitz-continuous functionals.

This paper substantiates the convergence rate estimates for the proposed version of the Mirror
Descent method, proves its optimality from the point of view of the theory of lower bounds for objective
functionals of various smoothness levels: which have a Lipschitz-continuous gradient or satisfy the
Lipschitz (Holder) condition. It is also shown that the obtained estimates of the convergence rate are
preserved for a quasi-convex [Nesterov, 1984; Nesterov, 1989; Konnov, 2003] objective functional and
constraint (see e.g. [Gasnikov, 2018, Exercise 2.7]). Using the restart technique, the optimal method
for strongly (quasi-)convex objective functionals is considered. The paper ends with some numerical
experiments for geometric problems with functional constraints, which illustrate that the proposed
method can work faster compared to [Bayandina, 2018a, Section 3.3]. There are also given some
examples of more efficient methods in the case of a large dimension.

The contribution of this paper is as follows:

— Two analogues of the Mirror Descent method [Bayandina, 2018, Section 3.3] are proposed
for convex programming problems with another strategy for choosing a non-productive step. One of
them (Algorithm 2) solves the optimization problem under the assumption of quasi-convexity of the
objective functional and convexity of the constraint. The second method (Algorithm 3) is applicable in
the case when both objective and constraint are quasi-convex, but assumes knowledge of the Lipschitz
constant of the constraint M,. Estimates of the rate of its convergence and optimality are obtained in
terms of lower bounds for convex objective functionals of various smoothness levels.

— It is shown that the obtained convergence rate estimates are valid for the case of the
minimization problems with quasi-convex objective functionals of different smoothness levels.

— It is shown that for the Holder-continuous quasi-convex differentiable (or subdifferentiable by

1
Clarke) objective functionals the convergence rate is equal to 0(—2).
€
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— Using the restart technique, an optimal method was proposed for the class of minimization
problems with strongly (quasi-)convex Holder-continuous objective functionals with the complexity

1
estimate equal to O (—)
&

— Numerical experiments for geometrical problems (some analogues of the Fermat-Torricelli—
Steiner problem and the problem of the smallest covering ball) with convex constraints are presented.
When (sub)gradient values of the functional constraints are large, the proposed method can work faster
[Bayandina, 2018]. Some tests for high-dimensional problems are also considered.

— Numerical experiments for the minimization of quasi-convex functionals are given. A variant
of the smallest covering ball problem with a quasi-convex objective functional is considered.

Problem Statement and Standard Mirror Descent Basics

Let (E, | -]]) be a normed finite-dimensional vector space and E* be its conjugate space with the
norm:
Iyll = max{(y, x), [ldl < 1},

where (y, x) is the value of the continuous linear functional y at x € E.
Let Q C E be a (simple) closed convex set. Consider the following problem:

f(x) — min, @)
xeQ
s.t.
g(x) <0. )
Assume that convex functional g satisfies the Lipschitz condition with a constant M,:
lg(x) =gl < Myllx =yl Vx,y € Q. 3)

We consider the cases of convex and quasi-convex objective functional f. Let d: Q — R be
a distance generating function (d.g.f) which is continuously differentiable and 1-strongly convex w.r.t.
the norm || - ||, i.e.
Vx,y,€ Q (Vd(x) = Vd(y), x ~y) > [lx =y,

and assume that there is a constant ®(, such that d(x,) < ®(2), where x, is a solution of the
problem (1)—(2) (we suppose that the considered problem is solvable).
For all x,y € Q C E consider the corresponding Bregman divergence

V(x,y) = d(y) - d(x) = (Vd(x),y — x).
The proximal mapping operator is defined as follows:

Mirr,(p) = arg mig {{(p,u) + V(x,u)} foreach x€ Q and p € E".
ue

We assume for simplicity that Mirr,(p) is easily computable.

Mirror Descent Algorithms: some step-sizes strategies

Two Mirror Descent methods for optimization problems with one convex subdifferentiable
functional constraint were proposed in [Bayandina, 2018a]. The convergence of the first of them
is obtained for the case of the Lipschitz-continuous objective functional (see [Bayandina, 2018a,
Section 3.1]), while the convergence of the second is justified under the assumption that the gradient V f

KOMIIBIOTEPHBIE UCCIIEJOBAHUA U MOJAEJIUPOBAHUE
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satisfies the Lipschitz property (see [Bayandina, 2018a, Section 3.3]):

IVF(x) = VDI < Lllx -yl Vx,y € Q. 4)
Let us remind the method ([Bayandina, 2018a, Section 3.3]; see Algorithm 1).

Algorithm 1. Adaptive Mirror Descent

Require: € > 0,0 : d(x.) < (93

1 X0 = argmin,eo d(x)

2: 1 =@

32 N«<20O

4: repeat

5. if g(x") < & then

6 My =IVFONlh by =

N

7: AV = MirrxN(hNVf(xN)) /I “productive steps”
8: N-—>1

9: else

) _ N __ &
10: My = |IVg(xll«, hn = 2
11: N = Mirr v (hyVg(xN)) /| “non-productive steps”
12:  end if

13: N« N+1
N I
14 until 2— < > ehdl
Jjel

N .= argmin i jey f(xk)

Ensure: x

Lemma 1. Let us define the following function:
w(r) = max{ f(x) = f(x) : [lr = xll < 7}, ®)

where T is a positive number. Then for any y € Q

JO) = f(x) < 0y, x.)), (6)
where /)
vi(y, x,) = <||Vf(y)||’y - x*> Jor Vi(y) #0 (7)

and vy(y, x,) = 0 for Vf(y) = 0.
For Algorithm 1 the following theorem holds.
Theorem 1. Let € > 0 be a fixed number and the stopping criterion of Algorithm 1 is satisfied.

Then
. k k
9 vk < k) < . 8
iy (0 <o Mg < ®

In addition, Algorithm 1 works no more than

2 1, M%)@?
N:[—maX{ 1% )

&2

iterations.

Now we will estimate the rate of convergence of the proposed method. For this we need the
following auxiliary assumption [Nesterov, 2004, Lemma 3.2.1].

2020, T. 12, Ne 2, C. 301-317
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Basing on Lemma 1 and Theorem 1, we can estimate the rate of convergence of Algorithm 1 for
a differentiable objective functional f with the Lipschitz-continuous gradient. Using the well-known
inequality for an exact solution x,. we can get that (see, for example, [Nesterov, 2004])

1
J@) <) + IVl = xdl + = Lilx = xl?,

. ) 1
min f(x*) - f(x,) < min {qu(x*)n*u#‘ - xl + LI - x*uz}.
kel kel 2
Further, the following estimate is valid:
1
Sx) = f(x) < ellVf(xoll + ELsz.

Corollary 1. Let f be differentiable on Q and (4) hold. Then, after the stopping of Algorithm 1,

the next inequality holds:
2

min f(4) - f(x) < - IV + 2.
1<k<N 2
Let us observe a new version of the adaptive Mirror Descent method with another step selection
strategy. A resembling idea was researched in [Juditsky, 2010], but only for the case of Lipschitz-
continuous functional. Note, that the following modification can be used to minimize functionals with
different levels of smoothness. As earlier, we will consider the method for a fixed accuracy & > 0,
an initial approximation x°, and some value @, such that V(x°, x,) < ®(2).

Algorithm 2. Adaptive Mirror Descent

Require: € > 0,0 : d(x.) < (93

1 X0 = argmin,eo d(x)

2: =@

32 N«<20O

4: repeat

s:if g(xV) < &|Vg(xV)|. then

6 My =IVAGNlh by = S
N

7: AV = MirrxN(hNVf(xN)) /I “productive steps”

8: N-—>1

9: else e

10: My = IV, hy = e
N

11: N = Mirr v (hyVg(xN)) /1 “non-productive steps”

12:  end if

13: N<—]\£+1

O
14: until 2—2 <N
£
Ensure: xV := argmin i jey fG)

The following theorem holds.

Theorem 2. Let € > 0 be a fixed number and Algorithm 2 work during a fixed number of steps

203
E
Then we have
min vk x) <, r?alxg(x") < eM,. (11)
€ €

KOMIIBIOTEPHBIE UCCIIEJOBAHUA U MOJAEJIUPOBAHUE
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Proof. 1. 1fkel,
eV ), o = x) = evp (4 x) <

h2
< 3’<||Vf<xk>||£ + VK, ) = Ve x) = (12)

82
=+ VO, x) = VO x,).
k _ k
g(x") > e and g(x*) — g(x.) S g(x")

2. If k e J:= N\ I, then ————— >
Vg (x)ll. V(). IVg(x0)ll.

> g. Therefore, the

following inequalities hold:

h2
&2 < Ii(8() - g(x)) < IV +

2
VK x) - VO x,) = % + VK x) - VO x,), or (13)

2

% <VOr, x) = ver x).

3. After summing up the inequalities (12) and (13) one can get

2 2 2
I 2 N
> evi(,x) < STH - ST” + VO, x) - V! x,) = &1 - ST + @2,
kel

After (10) iterations of Algorithm 2 the next inequality holds:

r]£1€1}1 Vf(xk,x*) < e.

Clear, for each k € I g(x*) < &l|Vg(xh)ll. < eM,.
Now we have to show that the set of productive steps / is non-empty. If / = @, then |J| = N

2
and (3) means that N > —20. On the other hand, from (13) we have
&

&N

T < V(xo,x*) < @é,

which leads us to the controversy, so I # @. |

Let us show how to estimate the quality of the solution by the function basing on the previous
theorem. Note, that it is possible to take into account different levels of smoothness of the objective
functional.

Corollary 2. Let f satisfy the Lipschitz condition

If(x) = DI < Myllx =yl Vx,y € Q. (14)
Then, after the stopping of Algorithm 2, the following inequality holds:

min FOM = f(x) < Mye.

2020, T. 12, Ne 2, C. 301-317
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The case of quasi-convex functionals

Let us consider the optimization problem (1) under the assumption of quasi-convexity of the
objective functional f. Recall (see [Hazan, 2015]) that function f: Q — R is called quasi-convex, if

f((1-a)x+ay) <max{f(x), f(y)} Yae[0;1] Vx,ye Q.

As earlier, let g satisfy the Lipschitz condition (3) with the constant M,.
Let us remind the definition of Clarke subdifferential [Clarke, 1983]. Let xog € R” be a fixed
point and /2 € R" be a fixed direction. Denote

1
Foixosh) = Jim sup —(f(x' + ah) = f(x').

X' =X0 o]0

Value fCTl(xo;h) is called the Clarke subdifferential of functional f at the point xy in the
direction h. This function is subadditive and positively homogeneous, thus we can define the
subdifferential of the function f at the point xj as follows:

dcif(xo) = {v e R | f,(x0:0) > vg Vg € R}.

According to this,
fooshy = max (v, h).

vedcr f(xo)

Note, that from now on we will understand any element (vector) of the Clarke subdifferential
as the subgradient of the quasi-convex (locally Lipschitz) functional f. For convex functional g, we
understand the concept of a subgradient in the standard way.

Lemma 2. Let f: X — R. For any y € Q, vector p, € E* and h > 0 define z = Mirry(h - p,).
Then for any x € Q the next inequality holds:

h2
Wpy,y — x) < 7||py||i + V(y, x) - V(z, X).

Note, that for convex subdifferentiable functional f and subgradient p, = Vf(y) this inequality
is modified as follows:

h2
h(f) = (X)) < V), y — x) < 7||Vf(y)llf + V(y,x) = V(z,x).

Note that for quasi-convex objective functional f and constraint g instead of (sub)gradient V f(y)
in vy(y, x.) (see (7)) we can consider some element of the following set

D) ={pl(p.x—y)>0 ¥yeX: f(y) < fx)}

Generally, this set is a non-empty, closed and convex cone. Following [Nesterov, 1989], we assume
that Df(x) # {0} for x # x.. Hereinafter denote D f(x) as one arbitrary vector from D f(x):

Df(x) € Df(x).

However, the (sub)gradient or the Clarke subdifferential of f or g can be used, if they are finite
and nonzero (we assume that Vf(y) # 0 for y # x.).
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Theorem 3. Let f be a quasi-convex functional and g be a convex functional. Then for
2

20
Algorithm 2 after N = [_20] steps the following inequalities hold:
£
invy(x*, x,) < ) < eM,.
r?el;lVf( s Xs) < &, rgglxg( ) < eM,

Now let us consider the case when both objective f and functional constraint g are quasi-convex.

Lemma 3. Lemma 1 is valid for v,(y, x.) in the case of a quasi-convex objective functional and
functional constraint.

Proof. Let us note that for any non-productive point x the following inequality holds:
8(x) = gx.).

Set Q, = {y € Q|g(y) = x}. For some A > 0 we define y, = x. + ADg(x). As (y. — x, Dg(x)) = 0, we
have
(x, + ADg(x) — x, Dg(x)) = 0 and (x, — x, Dg(x)) = —A/IDg)|*.

It means that

_ [ Dgx») o
AIDg()ll = <||Dg(x)||’x X*>, ys = x:ll = vg(ax, x.),
and g(x) — g(x.) < g(vx) — g(xs) < Mg“y* - x|l = Mng(x’ X). o

Consider the following modification of Algorithm 2 (N =0,1,2,...).

Algorithm 3. Adaptive Mirror Descent, the Case of Quasi-Convex Functional Constraint
1 if g(xV) < &- M, then

2. Nl = MirrxN(hﬁDf(xN)) /I “productive steps”
3: else

4 ANt = MirrxN(hvag(xN ) // “productive steps”
5. end if

Let us choose the step-sizes as follows:

! Cy g Cq

h, = ————, h = —————.
C DAL ©IDg()I.

Denote N; and N; as the number of productive and non-productive steps during the work of Algorithm 3
respectively.
Similarly to [Bayandina, 2018a] (see also the proof of Theorem 2), the next inequality holds:

1 1
: k 2 f\2 T 2 2\2 k12 2
CpNyminv (o, x) < 5 ;(hp DB cg;vgu",x*) ts gwk) IDg (I3 + 05,

20?2
LetCo=Cr=¢,N > 8—20. As g(x") > Mye, k € J, and using Lemma 3 for constraint g(x) with

Lipschitz constant M, we get

gr) — g0  gh

_Vg(xk,x*) < M M
8 8

REMARK 1. Algorithm 3 unlike Algorithm 2 solves the problem under the assumption of quasi-convexity
of the functional constraint. Note, that we have to know the Lipschitz constant M, which appears in the transition
criteria of Algorithm 2.
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Theorem 4. Let f be quasi-convex, g be quasi-convex with Lipschitz constant M,. Then for
2

20
Algorithm 3 after N = [—20] steps the following inequalities hold:
£
inv(x*, x) < ) < eM,.
r?el;lVf( s Xs) < &, rgglxg( ) < eM,

Now we will show the optimality of the proposed algorithmic procedures for the case of Holder-
continuous objective functionals.

REMARK 2. Let f satisfy the Holder condition (v € [0; 1))
lf(0) = fFO < Myyllx = yII” YV, y € Q. (15)

For example, f(x) = /x and f(x) = v/x.
Let us recall the following inequality ([Gasnikov, 2018, Remark 5.1])
1-v
M\ a®
M,a" < M,(—=) =+, 16
¢ ( 5 ) 2 (16)
which is true for each 6 > 0. Then by (15) we have

2
I+v

1f0) = FO)l < == llx =yl +6.

I+v

Set 6 = €. Then ,

1fx) = fOl < == llx =yl + . (17)
2{~;‘wl+v

Then by Lemma [ after the stopping of Algorithm 2, 1}{11}1 v¢(xX, x.) < & means that the following inequality
uny
holds: P 2

T+v T+

M, v
f@-f <~z +e= %SH% teé. (18)
E 1+v

Note that for € < 1 the inequality (18) means
f@ - f < Me

for some M > 0. So, for problems with a (quasi)convex Hdlder-continuous differentiable (or D f(x) # {0}
for x € x,) objective functional and convex Lipschitz-continuous functional constraints we can achieve an

g-solution after
1
0 —
&

iterations of the Mirror Descent method. This estimate is optimal due to its optimality on a significantly narrower
class of problems with Lipschitz-continuous objective functionals [Nemirovsky, 1983].

Optimal methods for Mirror Descent on the class of non-smooth strongly
convex problems

Consider the optimization problem under the assumption of strong convexity of the objective
function and functional constraint with the parameter u.
f(x) = min, g(x) <0, xe0, 19)

where X is a closed convex set.
Let the prox function d(x) be bounded on the unit sphere with respect to the chosen norm || - |:

d(x) <Q® VxeQ:|al < 1. (20)

Let x € Q and there exist Ry > 0, such that ||x° — x,||> < R(Z).
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We will propose some methods which can guarantee an g-solution x of the problem (19):

S - f(x) <eand gx) < &.

The main idea is using the restart technique of Algorithm 2. Consider one well-known statement
(see [Bayandina, 2018b]).

Lemma 4. Let f and g be u-strongly convex functionals with respect to the norm || - || on Q,
X, = arg miél f(x), g(x) <0 (Vx € Q) and for some g7 > 0 and &5 > 0 the next inequalities hold:
Xe

J0) = f(x) < &, 8(x) < &,. (21)
Then
%llx — xJP < max{ey, &), (22)

Let us consider an analogue of Algorithm 2 for strongly convex problems. We must emphasize
that for Algorithm 2 one can obtain effective estimates of the rate of convergence for the objective
functionals with any level of smoothness. Consider, in particular, the following example.

Let f(x) = max f;(x), where f; are differentiable at any x € Q and their gradients are Lipschitz-

i=1,m

continuous: L
IVfi(x) = VDI < Lillx =yl Yx,yeQ Vi=1,m. (23)
Consider function 7: RT — R*:
5°L

where L := max{L;}.
i=1l,m
It is obvious that 7 decreases, 7(0) = 0, so for any & > 0 there exists

o(e) > 0: 1(p(e)) = &.

Algorithm 4. Restart procedure for Algorithm 2

Require: accuracy € > 0 initial point 2 Qstdx)<Q? VxeQ:xl<1;
strong convexity parameter u; Ry such that Ix0 = x| < R(z)

x—2x°
1: Set do(x) = d( R )
2: Setp=1
3: repeat
4 SetRZ=R}-277
R,
5: Set Ep = Tp

6:  Set x” as the output of Algorithm 2 with accuracy @(g),), prox function d,,—i(-) and Q?

— xP
7 dp(x)ed(xRpx)

8 Setp=p+1
2

9: until p > log, /%
g
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Theorem 5. Let Vf be Lipschitz-continuous, f and g be u-strongly convex on Q C R" and
d(x) < Q? for all x € Q, such that ||x|| < 1. Let initial point e Qand Ry >0 satisfy

I — xl? < R2.
0

Then for p =
hold:

R? _
log, /%} output xP is an e-solution of the problem (19), also the following inequalities
g

FOP) - fx) <& g(P) < Mge,

S 2
I — P < = max{1, M,).
u

Proof. Function d,(x) = d (x
II.1]

to the norm R for all p > 0. It is also easy to prove the following inequality
p

P
al ), defined in Algorithm 4, is 1-strongly convex with respect
p

X — x.I? <R

5 Yp=0.

If p = 0, the statement holds due to the choice of 1Y and Ry. Suppose that |[x? — X < Ré for
some p. Let us prove that IxP* — x| < Ri+1' As dp(x.) < Q2. on the restart number (p + 1) after no

more than
2Q°RS
N, p+l =

/952(5[&1)

iterations of Algorithm 2, for x**! = ¥Vr+1 the next inequalities hold:

'uRp+l
7

FOPTY — f(x) < gprts 8P <gpiMy,  if epir =

According to Lemma 4,

2¢e
I = xP < %“ max(1, My} = R2,, max{1, My}.
So, for any p > 0 we have proved that

2
llxP = x.|* < R: max({1, Mg} = 2—2 max{1, M},

2 2
HRG HRGM
FON) = ) < b 80N < 5
_ KRG . . . iy
Consequently, p = p = |log, e | output x” is an g-solution of the problem (19) and next inequalities
£
hold: 5
R 2e
2 2 0
l? — x.]|” < R, max{l, Mg} = > max{l, My} < ; max{l, M,}.

Let K be the number of iterations of Algorithm 2 during the work of Algorithm 4, N, be the total
number of iterations of Algorithm 2 on the restart number p. As function 7: R* — R* increases and
for any & > 0 there exists (&) > 0: T(p(€)) = &, it means that
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The number of iterations of Algorithm 2 during the work of Algorithm 4 will not exceed

KRG
— _

REMARK 3. The estimate of the number of iterations of Algorithm 2 can be detailed in the case of & < 1.
For any 6 < 1 there is such constant C, that 7(6) < C¢ for some constant C. So, we can suppose that we)=C-¢
for the corresponding constant C > 0. On the restart number p + 1 of Algorithm 2 after no more than

2p2
2Q°R,

2
p+l

(25)

p+1 =

iterations of Algorithm 2, the output x”*! satisfies the following inequality:

FOP) = f() S Crgprrn (P < gpa,
LR
where g,41 = Tpﬂ According to Lemma 4,

||x"+1 B x*||2 < 2max{l, Cle 4

= max{1,C} - R p+1

So, forall p >0, _
Il = x.|I> < max({1,C} - R} = max{1,C}-Rj-27".

Note, that for all p > 1 the following inequalities hold:

HRY = MRS
F(xP) = f(x.) < max{l, C} = 277, g(x,) < max{l,C}- = 27P,

RZ
Thereby, if p > log2 e , then x” will be (max{l Cle ) solution to the problem, moreover:

2
2 - x P < max{1,C} - R2 - 277 < 22

2

Let us evaluate the total number of iterations N of Algorithm 2. Let p = {log2 } According to (25),

up to multiplication by a constant we have:

P P 20°R; L 3202270 640227 6402
N=YNk =Y+ | <P — <P+ .
z; P Z:A ( ] Z ( qu RS ] qu RS ue

p+l p=1

Note, that the method can be applied to solve the problem (1) in the case of a strongly quasi-
convex objective functional.

REMARK 4. Function f: Q — R is called strongly quasi-convex [Necoara, 2019], if for each x € Q
F8) = () 2 (Vf @, x = ) + Sk, = P,

where x. is the nearest (by Bregman divergence V) to x solution of the optimization problem.

Numerical Experiments

All calculations were performed in CPython 3.7 on a computer fitted with a 3-core AMD
Athlon II X3 450 processor with a clock frequency of 3.2 GHz. The computer’s RAM was 8 GB.
As a rule, we indicate the operating time of the algorithms in seconds.
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An analogue of the Fermat-Torricelli-Steiner problem

EXAMPLE 1. Input data: n = 1000, point coordinates Ay = (aik, az,--->au) (k = 1,2,...,5)
are represented by integers from the interval [-10, 10], objective functional (My = 1)

5
1
) = 2 ) Vo= aw? + (= a) + .+ (o = an)?,
k=1
0 0.1,...,0.1) 5
=—2"" " " O={x=(x,... }, ©5 = 2 and functional constraint
01,00 0={x=(x , X)) | Z x and functional constrain
= <
g(x) mzlr’rzlgf.’zo{gm(x)} 0
g1(x) = anlxl + anlel+ ...+ aplxl -1,
82(x) = a1 |x| + @nlal + ...+ a2lxal - 1, (26)
gm(x) = 1 |x1| + amolx| + .o+ @l = 1,
where the coefficients a1, 12, ..., @y, are represented by the matrix
1 1 1 1 1 1
1 2 2 2 2 2
1 3 3 3 3 3
1 2 3 4 999  1000{. 27
1 3 4 5 1000 1001
1 18 19 20 ... 1015 1016

The averaged results of 10 experiments with a random selection of points A; for Example 1 are
presented in Table 1. As one can observe, Algorithm 2 works faster than Algorithm 1.

Table 1. Comparison of the results of the algorithms, Example 1

. Iterations | Time, s | Iterations | Time, s
Algorithm 1 Algorithm 2

12 — >300 16 0.068

Va — >300 64 0.264

Yo — >300 144 0.526

I8 — >300 256 0.920

An analogue of the problem of the smallest covering ball

EXAMPLE 2. Input data: n = 1000, point coordinates Ay = (ax, ok, ..., an) (k = 1,2,...,5)
are represented by integers from the interval [-10, 10], objective functional (M; = 1)

fx) = ]f(I_l%( V= ap)? + (2 — ag)? + ...+ (%, — ank)z),

o_ (0.1,...,0.1) o -
= —” 0.1 o0’ O={x=(x1,....,x,) | Z x } ©p = 2 and functional constraint (26), where
the coefﬁc’ients’ Q11, X125 - - - Qg AT represented by the matrix (27).

The averaged results of 10 experiments with a random selection of points A; for Example 2 are
presented in Table 2. As one can observe, Algorithm 2 works faster than Algorithm 1.
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Table 2. Comparison of the results of the algorithms, Example 2
. Iterations | Time, s | Iterations | Time, s
Algorithm 1 Algorithm 2
12 — >300 16 0.071
Yy — >300 64 0.259
Y6 — >300 144 0.575
I/ — >300 256 1
An example of a concave objective functional satisfying the Hélder condition
EXAMPLE 3. Input data: n = 1000, objective functional (My,, = 1)
1 n
fo) =~ Zl Vi
=
0.1,...,0.1 . . .
K= g, O={x=(1,....,x%) |x;=0Vi > x% < 13, (93 = 2 and functional constraint
0.1, ..., 0.DIl i=1
= max ,
g0 = max (g, (o)
g1i(x) =ax;+apx+...+apx,—-1<0,
8(x) = ap1x; + Xy + ...+ X, — 1 <0, (28)
gm(x) =@ X1+ X2+ Appxy — 1 <0,

where the coefficients a1, @12, ..., @, are represented by the matrix (27).

The results of Example 3 are presented in Table 3. As one can observe, Algorithm 2 works faster

than Algorithm 1.

Examples with large dimensions

Table 4 presents the results of Algorithm 2 for the dimension n = 3 - 10°. Because of the large
dimensionality it is impossible to obtain the results for Algorithm 1 in a relatively short period of time.

. Iterations | Time, s | Iterations | Time, s
Algorithm 1 Algorithm 2

12 — >300 16 0.158

Va — >300 64 0.575

Yo — >300 144 1.089

18 — >300 256 1.848

Table 4. Some results of Algorithm 2 for n = 3 - 10°

Table 3. Comparison of the results of the algorithms, Example 3

. Iterations | Time, s | Iterations | Time, s | Iterations | Time, s
Example 1 Example 2 Example 3

12 16 34 16 30 16 35

14 64 123 64 118 64 141

3 144 278 144 272 144 326
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An example of a geometrical problem of a quasi-convex objective functional

EXAMPLE 4. Suppose we are given several points Ay, (the centers of the balls wy). It is necessary
to find the ball of the smallest radius R that covers these points. In other words, it is necessary to find
the center of such a ball that the maximum distance from the center to these points is the shortest
possible. At the same time, we assume that the point (center) X can lie on some set which is defined by
functional constraint (28), where the coefficients a1, @12, ..., @, are represented by the matrix (27).
The distance from X to each of the fixed points Ay is determined as follows:

XAk + (p — I)I’k, if |XAk| > Ik (rk — radius of Wi, P > 1),
d(X,Ax) = .
PpXAx, otherwise,

where d(X,Ay) =: f(x) is a concave function (My = p). Note that d(X, Ay) is non-smooth at points X:
|XAg| = ri. For points of non-smoothness we use some element of Clarke subdifferential as an analogue
of subgradient.

0.1,...,0.1) ) .
———— = ®: = 2. The coordinates of the
l(0.1,...,0.»)" ~©

points A; are chosen in such a way that ||A|]| € [1;2], the number of points A; is equal to 1000
and r, = 1 for all k = 1, 100.

The averaged results of 10 experiments with a random selection of points A; for Example 4 are
presented in Table 5. As one can observe, Algorithm 2 works faster than Algorithm 1. Note that we can
use Algorithm 2 for problems with quasi-convex objective functional and convex functional constraints
(see Theorem 3). Another approach (Algorithm 3) assumes knowledge of the Lipschitz constant of the
constraint M,.

Other input data: n = 1000, p = 2, x° =

Table 5. Comparison of the results of the algorithms, Example 4

. Iterations | Time, s | Iterations | Time, s
Algorithm 1 Algorithm 2

1A 32680 199 16 0.095
14 65392 392 64 0.391
I3 98135 587 144 0.862
g — >1000 256 1

Yio — >1000 400 2
12 — >1000 576 3

Conclusion

Summing up, let us remark the conclusions of the article. There was proposed an analogue
of adaptive Mirror Descent [Bayandina, 2018a, Section 3.3] for convex programming problems with
another step-size strategy. The estimates of the rate of its convergence were proved. Optimality in terms
of lower bounds was stated. Moreover, it was shown that the proposed methods can be used to minimize
quasi-convex objective functionals with different levels of smoothness. Also, using the restart technique
an optimal method was proposed to solve optimization problems with strongly convex objective
functionals. Some numerical experiments were carried out to solve geometrical problems with convex
constraints. The advantages of the proposed methods were demonstrated during these experiments.
Numerical examples for the minimization of quasi-convex functionals were given. They illustrate that

KOMIIBIOTEPHBIE UCCIIEJOBAHUA U MOJAEJIUPOBAHUE




Mirror descent for constrained optimization problems with large subgradient . . . 317

the proposed methods work faster than [Bayandina, 2018a, Section 3.3], since in Algorithm 2 the
number of iterations is fixed for a given & due to the stopping criterion. However, functional constraint
evaluation, generally, can deteriorate: g(¥) < M,e instead of g(X) < & in [Bayandina, 2018a].

The authors are very grateful to Y. Nesterov for fruitful discussions.
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